Best Furfrou (Natural) counters in Pokémon GO

This table displays a list of best Furfrou (Natural) counters in Pokémon GO with their Fast Attacks, Charged Attacks, DPS (damage per second), TDO (total damage output), faints, TTW (time to win), and score. The list is sorted by the score, which is calculated based on the DPS and TDO.
Simulation settings
Best performing move types
60.0%
8.0%
5.5%
4.5%
3.5%
3.0%
3.0%
3.0%
2.5%
2.5%
1.5%
1.5%
1.0%
0.5%
Furfrou (Natural) type chart
When fighting Furfrou (Natural), keep in mind the following that Normal-type Pokémon are weak to Fighting type moves. They take reduced damage from Ghost type moves.
![]() | 160.0% |
---|
![]() | 39.1% |
---|
Type chart shows the percentage (%) of damage taken from an incoming attack of a particular type.
About the results
Our guide provides detailed information on recommended Pokémon and moves that are most effective against Furfrou (Natural) in Raid Battles. Whether you're looking for the best counters to take Furfrou (Natural) down quickly with high DPS, or the tankiest counters that can withstand its attacks, our guide has something for every trainer.
The top-ranked Furfrou (Natural) counter is Mega Rayquaza, followed by Mega Blaziken, Terrakion, and Shadow Machamp. The table also includes Keldeo (Ordinary), Lucario, Shadow Hariyama, and Mega Alakazam, among others. Each Pokemon's move type is indicated by an icon beside the move name.
The most effective move-types to use against Furfrou (Natural) are:
Typing | Usage % |
---|---|
Fighting | 60.0% |
Dragon | 8.0% |
Dark | 5.5% |
Psychic | 4.5% |
Fire | 3.5% |
Water | 3.0% |
Ground | 3.0% |
Electric | 3.0% |
2.5% | |
Grass | 2.5% |
Bug | 1.5% |
Steel | 1.5% |
Rock | 1.0% |
Normal | 0.5% |
About our ranking methodology
When calculating the best counters for any Pokémon, our simulator takes into account various factors, such as the defender's typing and average DPS against each attacker, the weather's influence, energy left over from using charge moves, Shadow Pokémon attack and defense stat changes, and more. During the initial phase of simulations, we calculate DPS and TDO for each attacker that is currently available in the game, and then we continue to rank them.
We use a ranking method developed by a Reddit user named /u/Elastic_Space, which is described in detail in this Reddit post. It is a fairly complicated, but very well thought-out mathematical model for predicting simulation results without actually running the simulations. It also correlates with field data almost too well not to be used.
Our Time to Win (TTW) and Faint numbers are also estimated, and should be taken with a grain of salt. Since we do not account for factors like Friendship and Mega damage boost, they will differ from actual experience in the field.